

A két bors ökröcske fényvezérelt robot

1. Perifériák

- Állítsátok be az alábbiakat a Port settings menüpont alatt!
- A Run-Test On üzemmódban figyeljétek meg, milyen értéket mutatnak!

Studuino

Controls

the robot

DC motor

linear direction.

Servomotor

Pin Assignment Board DC motor Servomotor Button D2 D4 D7 D8 🗸 M1 🛛 🗸 M2 🗖 A0 📄 A2 A1 🗸 D9 📄 D10 📄 D11 📄 D12 🗖 A3 Sensor/LED/Buzzer 🗖 A0 Light sensor 🔲 A4 🛛 Light sensor 🔲 A1 🛛 Light sensor A5 Light sensor A2 LED 🗸 🗚 IR photoreflector Ŧ 🗸 A3 🛛 LED 🔽 A7 🛛 Light sensor Ŧ Cancel

Light sensor

Detects the presence or absence of an object by the reflection or infared

Uncheck All ОК

2.PROGRAMFI FMFK

Mi a szerepe az itt látható programelemeknek?

3.01 DJÁTOK MEG AZ ALÁBBI FELADATOKAT!

- Építsétek meg úgy a robotot, hogy a szekér platójába épített Light sensor érzékelhesse a rá • helyezett tököt, az ökröcskék lábánál elhelyezett IR Photoreflector tudja figyelni a szabad utat! A robot építésekor mindenképpen biztosítsátok azt, hogy oldalról ne érhesse fény az érzékelő felületét!
- Programozzátok meg a robototokat úgy, hogy ha a tököt ráhelyezitek a kocsira, akkor világítson, induljon el, és egészen addig menjen előre, amíg el nem jut a falig. Ekkor álljon meg, villogjon, borítsa le a tököt, csukja vissza a platóját, és tolasson vissza 5 másodpercig!
- Egy lehetséges programját a lap másik oldalán megtaláljátok!
- Legyetek kreatívak, és saját ötleteitekkel bővítsétek a két bors ökröcske programját!

4. MINTaprogram
Set servomotor D9T to 🚺 🔺 🔻 degrees
forever if Light Sensor A7 value < 50
LED A3 ON T
wait 1 secs
DC motor M1 power 100
DC motor M2 power 100
DC motor MIT on at CW.T
DC motor M2 on at CW.
wait until IR Photoreflector A6 value > 14
DC motor M1 - off Brake -
DC motor M2 off Brake
wait 0.5 secs
wait 0.5 secs
Set servomotor D9v to 90 🔺 v degrees
wait 1 secs
Set servomotor D9 to 0 A T degrees
DC motor M1 power 100
DC motor M2 power 100
DC motor M1 on at ccw. v
DC motor M2 on at ccw, v
DC motor M1 off Brake
DC motor M2 off Brake

5. Kisérletezzetek! Fényerősség mérés

- Végezzetek összehasonlító méréseket tablet/okostelefonotok és a robot segítségével!
- Töltsétek le és telepítsétek a Phisics Toolbox vagy a Light Meter applikációt! Ennek segítségével végezzétek el a következő méréseket!
- A robotot Test módban használjátok, az applikációból válasszátok a fényerősség mérést!
- Különböző mértékben árnyékoljátok vagy világítsátok meg a robot fényérzékelőjét! Figyeljétek meg, mit mutat a robot tesztfelülete, illetve az applikáció fényerősség mérője, és a megfigyelt adatokkal töltsétek ki az alábbi táblázatot!

	⊒ ⊯	0	🕕 💎 🚄 84% 📋 17:47			
				> 🔅		
Iluminano 34.26 lx	>e	Ć				
11(unitrance (k)) 2.000		inance vs tii	ne			
60 -	 65	70 Time (s)	75			
	⊲	0				

fényforrás/árnyékolás leírása			
a robot programja által mutatott érték (egység)			
az applikációval mért érték (lx)			

m

 A táblázat adataiból állapítsátok meg, hogy a robot programja által mutatott 1 egység hány lxnak felel meg!.....

rleC

